class FID
Bases: BaseMetric
Source code in aigve/metrics/video_quality_assessment/distribution_based/fid_metric.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
calculate_fid(real, fake)
Calculate FID score between real and generated videos.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
real
|
Tensor
|
Real video tensor [T, C, H, W]. |
required |
fake
|
Tensor
|
Generated video tensor [T, C, H, W]. |
required |
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
FID score. |
Source code in aigve/metrics/video_quality_assessment/distribution_based/fid_metric.py
calculate_statistics(video_tensor)
Calculate activation statistics (mean and covariance) from video frames.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
video_tensor
|
Tensor
|
Video tensor [T, C, H, W]. |
required |
Returns:
Type | Description |
---|---|
tuple[ndarray, ndarray]
|
Tuple of mean and covariance matrix. |
Source code in aigve/metrics/video_quality_assessment/distribution_based/fid_metric.py
compute_metrics(results)
Compute the final FID score.
Source code in aigve/metrics/video_quality_assessment/distribution_based/fid_metric.py
preprocess_tensor(video_tensor)
Resize and normalize a video tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
video_tensor
|
Tensor
|
Tensor of shape [T, C, H, W]. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: Preprocessed tensor of shape [T, C, H, W]. |
Source code in aigve/metrics/video_quality_assessment/distribution_based/fid_metric.py
process(data_batch, data_samples)
Process one batch of data samples and compute FID.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_batch
|
dict
|
A batch of data from the dataloader (not used here). |
required |
data_samples
|
List[Tuple[Tensor], Tuple[Tensor], Tuple[str], Tuple[str]]
|
A list containing four tuples:
- A tuple of |
required |